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Ribonucleotide reductases are crucial biosynthetic enzymes

that catalyze the conversion of ribonucleotides tal@oxy-
nucleotide monomers for DNA synthesis. The ribonucleoside
diphosphate reductase (RDPR) froBscherichia coli (EC
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signals for the tyrosyl radical in R2 were not diminished during
inactivation of RDPR by 2chloro-2-deoxynucleotide&. How-
ever, the presence of the tyrosyl radical was necessary to trigger
elimination of chloride from the substrate via (Figure 1).
Decomposition proceeded via thed2oxy-3-keto intermediate
B with S-elimination of H2/uracil and H4/inorganic pyrophos-
phate to produce the Michael aceptor 2-methylend43{(2
furanone C) which effected covalent alkylation/inactivation of
the enzyme.

We now describe synthesis of precursors and generation of
C3 free radicals containing O3 This provides the first

1.17.4.1) is composed of two nonidentical subunits R1 and R2. chemical models for simulation of radical initiation (at'C8nd

R1 subunits contain allosteric control sites and redox dithiol/ radical eégrylnatlon from C2 which resulted in the cascade
dilsulfide pairs, and R2 subunits contain a diiron chelate and a Propose&>* to ,oceur during inactivation of ribonucleotide
tyrosine-centered free radical. Mammalian RDPRs have a reductases by’zhloro-2-deoxynucleotides. Since a radical

similar composition, whereas RTPR framactobacillus leich-
mannii requires ribonucleoside triphosphate substrates an
employs adenosylcobalamin as the radical initi&t@tubbe and
co-workerg have proposed generic mechanisms for RDPRs in
which the tyrosyl radicdftt in R2 (via long-range electron
transfer with a cysteine in R1 to give a proximate thiyl radigal
initiates the reduction cascade by abstraction of tHey@rogen
atom from nucleotide substrates. The resulting @8lical is
proposed to lose O2as water in a heterolytic cleavage step
followed by hydrogen/electron transfers via redox-active cys-
teine residues in R1 to give overall replacement of the
2'-hydroxyl group by hydrogen with complete stereoretention.
X-ray crystal structure determinations of R2and R2P are in
harmony with this model.

In 1976, Thelander and co-workers reported tHaaZdo-
and 2-chloro-2-deoxynucleoside'Siphosphates were potent
inactivators of RDPR. Sjoberg and co-workers found that
inactivation of RDPR by 2azido-2-deoxynucleotides was

center generated in a 1,5-relationship with' & the sugar

gmoiety of a nucleoside should abstract' H8is process would

mimic the initiation step in the proposed enzyme mechasdism.
We were gratified to observe thatélkoxyl radicals generated
in situ by treatment of ‘enitrate estér 12 derivatives of
homouridine €.g, 8 or 11, Scheme 1) with tributylstannane/
AIBN participated in relay abstraction of H8 generate C3
radicalst®

Oxidatiort4® (at C3) of 1,2:5,6-di@-isopropylidenes-p-
glucofuranose, stereoselective reducfifrpenzoylation of O3,
and hydrolytic removal of the terminal isopropylidene gréfdp
gaveao-p-allofuranose derivativd!4¢15(~65% overall). The
Barton deoxygenatidfi of cyclic 5,6-O-thionocarbonates ap-
peared to be a straightforward route to the 5-deoxy sugar, but
the 5,60-thionocarbonate ol gave moderate yields of the
desired product upon treatment with4SmH/AIBN. Significant
6-deoxy isomer and other byproduétsvere produced, and
similar results for analogous deoxygenations have been hbted.

accompanied by appearance of new EPR signals for a nitrogen-Regioselective acetylatishof 1 gave primary acetat2 (93%)

centered radical and concomitant decay of peaks for the tyrosyl

radical’@ which was the first direct evidence for free radical
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a (@) AcClsymcollidine/CHCIl/—78°C. (b) PTCCI/DMAP/CHCN.
(c) BusSnH/AIBN/tolueneA. (d) (i) TFA/H2O; (ii) Ac O/pyridine. (e)
Persilylated uracil/Sn@ICHsCN. (f) NHy/MeOH. (g) MeCO/HC(OEtY
p-TsOH. (h) HNQ/Ac,O/—60 °C. (i) BusSnD/AIBN/benzeneX. (j) (i)
(CH3),C(OAC)COCI/CHCNI/A; (ii) 0.05 M HCI/MeOH.

which was converted into its 6&-phenoxythiocarbonyl deriva-
tive 3. Deoxygenatiotf of 3 (BuzSnH/AIBN) gavea-p-ribo-
hexofuranosd (~78% overall). Removal of the isopropylidene
group (TFA/H0), acetylation, and coupliRgof the anomeric
acetates with silylated uracil gase Deacylation of5 gave
1-(5-deoxyB-p-ribo-hexofuranosyl)uradit (6, homouridine;
63% from4). Homouridine 6) was converted into its'23'-
O-isopropylidene derivativ&a (82%) and nitrate®f to give 8
(92%).

Treatment of 6O-nitro ester8 with BusSnD/AIBN/benzene
at reflux faor 1 h (conditions used for generation of alkoxyl
radicals from nitrateé§) gave mixtures of7a/7b (86%, ~1:4)
[~80% reduction in the integratetHi NMR signal atd 4.76
(H3) and simplification of the doublet of doublets @t4.99
(J2—1 = 2.0 Hz,J»—3 = 6.0 Hz, H2) to a doublet J»—1 = 2.0
Hz) for 7a/7b; MS (CI, CH;) m/z300 (MH*, 100; 7b), 299
(MH*, 22;73)]. These results are in harmony with generation
of an alkoxyl radical at O6 1,5-abstraction of H3via the
obligate six-membered transition staté? and quenching of
the C3 radical by deuterium transfer from the stannane.

Treatment of homouridine6f with a-acetoxyisobutyryl
chloride gave the expect&®'-chloro-3-O-acetyl derivatived
(31%). Nitratior¥?2 of 9 and deacetylation o0 gave 1-(2-
chloro-2-deoxy-89-nitro-3-p-ribo-hexofuranosyl)uracill(l, 75%).
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Scheme 2

14 12
a(a) Bu;SnD/AIBN/benzeneX.

Treatment ofL1 with BusSnD/AIBN/benzeneX resulted in total
decomposition ofll with formation of uracil and 2-(2-
hydroxyethyl)-3(2)-furanone 12), a homologated analogue of
the 2-methylene-3@)-furanone formed by incubation of-2
chloro-2-deoxynucleoside 'sdiphosphates with RDPR.

The structure of the somewhat unstable endiwas
indicated by NMR and HRMS spectra and confirmed by
synthesis of 2-[2-tert-butyldimethylsilyl)oxy)ethyl]-3(2)-
furanone (the TBDMS derivative df2) from 2-deoxyglucosé*

The formation of12 is in harmony with results on the C3
oxidation of 3-O-tritylthymidine. The resulting 2deoxy-3-
keto derivative undergogselimination under mild conditions
to give 2-[(trityloxy)methyl]-3(24)-furanone?®

A plausible mechanism for the conversionXf into 12 is
illustrated in Scheme 2. TreatmentBf with BusSnD/AIBN/
benzenek should generate'@lkoxyl radicall3, which should
abstract H3by a 1,5-hydrogen atom transfer. Departure of the
chlorine ator®<(rather than chlorid® would produce enal4.
Conjugate elimination (or tautomerization bt to the 3-ketone
and -elimination) of uracil would givel2.

In summary, we have constructed-@-nitrohomouridine
esters and demonstrated exchange of 198 H3' under free
radical conditions. Generation of &-Bydroxyl radical, 1,5-
hydrogen atom transfer of H3and deuterium transfer from the
stannane to the resulting Céadical follow established prece-
dents. Treatment of the'-®-nitro ester of 2chloro-2-
deoxyhomouridine under analogous conditions resulted in
decomposition to give uracil and 2-(2-hydroxyethyl)-8§2
furanone. This provides direct chemical evidence for a radical-
induced cascade that mimics the postulated process for mech-
anism-based inhibition of ribonucleotide reductases'fmhibro-
2'-deoxynucleotides. We propose that departure of a chlorine
atombcis a plausible pathway for this process.
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